
An In-Depth Study of Stochastic Kronecker Graphs
C.Seshadhri, Ali Pinar, and Tamara Kolda

Sandia National Laboratories

Abstract—Graph analysis is playing an increasingly important
role in science and industry. Due to numerous limitations in
sharing real-world graphs, models for generating massive graphs
are critical for developing better algorithms. In this paper, we
analyze the stochastic Kronecker graph model (SKG), which is
the foundation of the Graph500 supercomputer benchmark due
to its many favorable properties and easy parallelization. Our
goal is to provide a deeper understanding of the parameters and
properties of this model so that its functionality as a benchmark
is increased. We develop a rigorous mathematical analysis that
shows this model cannot generate a power-law distribution
or even a lognormal distribution. However, we formalize an
enhanced version of the SKG model that uses random noise
for smoothing. We prove both in theory and in practice that this
enhancement leads to a lognormal distribution. Additionally, we
provide a precise analysis of isolated vertices, showing that the
graphs that are produced by SKG might be quite different than
intended. For example, between 50% and 75% of the vertices
in the Graph500 benchmarks will be isolated. Finally, we show
that this model tends to produce extremely small core numbers
(compared to most social networks and other real graphs) for
common parameter choices.

Index Terms—Stochastic Kronecker Graphs, Graph Mining,
Social Networks, Graph500, Lognormal Degree Distributions,
Random Graph Generation

I. INTRODUCTION

The role of graph analysis is becoming increasingly im-
portant in science and industry because of the prevalence of
graphs in diverse scenarios such as social networks, the Web,
power grid networks, and even scientific collaboration studies.
Massive graphs occur in a variety of situations, and we need
to design better and faster algorithms in order to study them.
However, it can be very difficult to get access to informative
large graphs in order to test our algorithms. Companies like
Netflix, AOL, and Facebook have vast arrays of data but cannot
share it due to legal or copyright issues1. Moreover, graphs
with billions of vertices cannot be communicated easily due
to their sheer size.

As was noted in [1], good graph models are extremely
important for the study and algorithmics of real networks.
Such a model should be fairly easy to implement and have few
parameters, while exhibiting the common properties of real
networks. Furthermore, models are needed to test algorithms
and architectures designed for large graphs. But the theoretical
and research benefits are also obvious: gaining insight into the
properties and processes that create real networks.

The Stochastic Kronecker graph (SKG) [2], [3], a gener-
alization of recursive matrix (R-MAT) model [4], has been
proposed for these purposes. It has very few parameters and

1http://blog.netflix.com/2010/03/this- is-neil-hunt-chief-product-officer.html

can generate large graphs quickly. Indeed, it is one of the
few models that can generate graphs fully in parallel. It has
been empirically observed to have interesting real-network-
like properties. We stress that this is not just of theoretical
or academic interest—this model has been chosen to create
graphs for the Graph500 supercomputer benchmark [5].

It is important to know how the parameters of this model af-
fect various properties of the graphs. A mathematical analysis
is important for understanding the inner working of a model.
We quote Mitzenmacher [6]: “I would argue, however, that
without validating a model it is not clear that one understands
the underlying behavior and therefore how the behavior might
change over time. It is not enough to plot data and demonstrate
a power law, allowing one to say things about current behavior;
one wants to ensure that one can accurately predict future
behavior appropriately, and that requires understanding the
correct underlying model.”

A. Notation and Background
We explain the SKG model and notation. Our goal is to

generate a graph G = (V,E) with n = |V | nodes and m =
|E| edges. The general form of the SKG model allows for
an arbitrary square generator matrix and assumes that n is a
power of its size. Here, we focus on the 2× 2 case (which is
equivalent to R-MAT), defining the generating matrix as

T =

[
t1 t2
t3 t4

]
with t1 + t2 + t3 + t4 = 1.

We assume that n = 2` for some integer ` > 0. For the sake
of cleaner formulae, we assume that ` is even in our analyses.
Each edge is inserted according to the probabilities2 defined
by

P = T ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
` times

.

In practice, the matrix P is never formed explicitly. Instead,
each edge is inserted as follows. Divide the adjacency ma-
trix into four quadrants, and choose one of them with the
corresponding probability t1, t2, t3, or t4. Once a quadrant is
chosen, repeat this recursively in that quadrant. Each time we
iterate, we end up in a square submatrix whose dimensions
are exactly halved. After ` iterations, we reach a single cell
of the adjacency matrix, and an edge is inserted.

Note that all edges can be inserted in parallel. This is one
of the major advantages of the SKG model and why it is
appropriate for generating large supercomputer benchmarks.

2We have taken a slight liberty in requiring the entries of T to sum to 1. In fact,
the SKG model as defined in [3] works with the matrix mP , which is considered the
matrix of probabilities for the existence of each individual edge (though it might be more
accurate to think of it as an expected value).

http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-officer.html

B. Our Contributions

Our overall contribution is to provide a thorough study of
the properties of SKGs and show how the parameters affects
these properties. We focus on the degree distribution, the
number of (non-isolated nodes), the core sizes, and the trade-
offs in these various goals. We give rigorous mathematical
theorems and proofs explaining the degree distribution of
SKG, a noisy version of SKG, and the number of isolated
vertices. Because of space restrictions, we do not give the
full proofs in the version. We have put up a completely
anonymized version of our full paper which contains all proof
details at [7].

1) Degree distribution: We provide a rigorous mathe-
matical analysis of the degree distribution of SKGs. The
degree distribution has often been claimed to be power-law,
or sometimes as lognormal [4], [3], [8]. Kim and Leskovec
[8] prove that the degree distribution has some lognormal
characteristics. Groër et al. [9] give exact series expansions
for the degree distribution, and express it as a mixture of
normal distributions. This provides a qualitative explanation
for the oscillatory behavior of the degree distribution (refer
to Fig. 1). Since the distribution is quite far from being truly
lognormal, there has been no simple closed form expression
that closely approximates it. We fill this gap by providing
a complete mathematical description. We prove that SKG
cannot generate a power law distribution, or even a lognormal
distribution. It is most accurately characterized as fluctuating
between a lognormal distribution and an exponential tail. We
provide a fairly simple formula that approximates the degree
distribution.

2) Noisy SKG: It has been mentioned in passing [4] that
adding noise to SKG at each level smoothens the degree
distribution, but this has never been formalized or studied.
We define a specific noisy version of SKG (NSKG). We
prove theoretically and empirically that NSKG leads to a
lognormal distribution. The lognormal distribution is important
since it has been observed in real data [10], [11], [12],
[13]. One of the major benefits of our enhancement is that
only ` additional random numbers are needed in total. Using
Graph500 parameters, Fig. 1 plots the degree distribution of
a (standard) SKG and NSKG for two levels of (maximum)
noise. We can clearly see that noise dampens the oscillations,
leading to a lognormal distribution.
These results have been communicated to the Graph500 com-
mittee, which has decided to update the Graph500 benchmark
(next year) to our proposed NSKG model [14].

3) Isolated vertices: An isolated vertex is one that has
no edges incident to it (and hence is not really part of the
output graph). We provide an easy to compute formula that
(very accurately) estimates the fraction of isolated vertices.
We discover the rather surprising result that in the Graph500
benchmark graphs, 50-75% vertices are isolated; see Tab. I.
This is a major concern for the benchmark, since the massive
graph generated has a much reduced size. Furthermore, the
average degree is now much higher than expected.

Fig. 1: Comparison of degree distributions (averaged over 25
instances) for SKG and two noisy variations, using the T from
the Graph500 Benchmark parameters with ` = 16.

TABLE I: Expected percentage of isolated vertices and repeat
edges (according to [9]), along with average degree of non-
isolated nodes for the Graph 500 benchmark. Excluding the
isolated vertices results in a much higher average degree than
the value of 16 that is specified by the benchmark.

` % Isolated Nodes % Repeat Edges Avg. Degree
26 51 1.2 32
29 57 0.7 37
32 62 0.4 41
36 67 0.2 49
39 71 0.1 55
42 74 0.1 62

Our analysis solves the mystery of isolated vertices, and is
being used by the Graph500 committee to design next year’s
benchmark [14].

4) Core numbers: The study of k-cores is an important
tool used to study the structure of social networks because
it is a mark of the connectivity and special processes that
generate these graphs [1], [15], [16], [17], [18], [19], [20].
We empirically show how the core numbers have surprising
correlations with SKG parameters. We observed that for most
of the current SKG parameters used for modeling real graphs,
max core numbers are extremely small (much smaller than
most corresponding real graphs). We show how modifying the
matrix T affects core numbers. Most strikingly, we observe
that changing T to increase the max core number actually
leads to an increase in the fraction of isolated vertices.

C. Parameters for empirical study

Throughout the paper, we discuss a few sets of SKG
parameters. The first is the Graph500 benchmark [5]. The
other two are parameters used in [3] to model a co-authorship
network (CAHepPh) and a web graph (WEBNotreDame). We
list these parameters here for later reference.
• Graph500: T = [0.57, 0.19; 0.19, 0.05], ` ∈ {26, 29, 32,

36, 39, 42}, and m = 16 · 2`.
• CAHepPh: T = [0.42, 0.19; 0.19, 0.20], ` = 14, and m =

237, 010.

• WEBNotreDame3: T = [0.48, 0.20; 0.21, 0.11], ` = 18,
and m = 1, 497, 134.

II. PREVIOUS WORK

The R-MAT model was defined by Chakrabarti et al. [4].
The general and more powerful SKG model was introduced by
Leskovec et al. [21] and fitting algorithms were proposed by
Leskovec and Faloutsos [2] (combined in [3]). This model has
generated significant interest and notably was chosen for the
Graph500 benchmark [5]. Kim and Leskovec [8] defined the
Multiplicative Attribute Graph (MAG) model, a generalization
of SKG where each level may have a different matrix T . They
suggest that certain configurations of these matrices could lead
to power-law distributions.

Since the appearance of the SKG model, there have been
analyses of its properties. The original paper [3] provides some
basic theorems and empirically show a variety of properties.
Mahdian and Xu [22] specifically study how the model param-
eters affect the graph properties. They show phase transition
behavior (asymptotically) for occurrence of a large connected
component and shrinking diameter. They also initiate a study
of isolated vertices. When the SKG parameters satisfy a certain
condition, then the number of isolated vertices asymptotically
approaches n. Their theorems are quite strong, but do not give
information about the number of isolated vertices for a fixed
SKG instance. In the analysis of the MAG model [8], it is
shown that the SKG degree distribution has some lognormal
characteristics. (Lognormal distributions have been observed
in real data [10], [11], [13]. Mitzenmacher [12] gives a survey
of lognormal distributions.)

Sala et al. [23] perform an extensive empirical study of
properties of graph models, including SKGs. Miller et al.
[24] show that they can detect anomalies embedded in an
SKG. Moreno et al. [25] study the distributional properties
of families of SKGs.

As noted in [4], the SKG generation procedure may give
repeated edges. Hence, the number of edges in the graph
differs slightly from the number of insertions (though, in
practice, this is barely 1% for Graph500). Groër et al. [9]
prove that the number of vertices of a given degree is normally
distributed, and provide algorithms to compute the expected
number of edges in the graph (as a function of the number of
insertions) and the expected degree distribution.

III. DEGREE DISTRIBUTION

In this section, we analyze the degree distribution of SKGs,
which are known to follow a multinomial distribution. While
an exact expression for this distribution can be written, this
is unfortunately a complicated sum of binomial coefficients.
Eyeballing the log-log plots of the degree distribution, one
sees a general heavy-tail like behavior, but there are large
oscillations. The degree distribution is far from being mono-
tonically decreasing. Refer to Fig. 2 to see some examples of
SKG degree distributions (plotted in log-log scale). Groër et al.

3In [3], ` was 19. We make it even because, for the sake of presentation, we perform
experiments and derive formulae for even `.

[9] show that the degree distribution behaves like the sum of
Gaussians, giving some intuition for the oscillations. Recent
work of Kim and Leskovec [8] provide some mathematical
analysis explaining connections to a lognormal distribution.
But this is only the beginning of the story. What does the
distribution oscillate between? Is the distribution bounded
below by a power law? Can we approximate the distribution
with a simple closed form function? None of these questions
have satisfactory answers.

Our analysis gives a precise explanation for the SKG
degree distribution. We prove that the SKG degree distribution
oscillates between a lognormal and exponential tail, and we
precisely characterize how. We provide plots and experimental
results to back up and provide more intuition for our theorems.

The oscillations are a somewhat disappointing feature of
SKG. Real degree distributions do not have large oscillations
(they are by and large monotonically decreasing), and more
importantly, do not have any exponential tail behavior. This is
a major issue both for modeling and benchmarking purposes,
since degree distribution is one of the primary characteristics
that distinguishes real networks.

But how do we rectify the oscillations of the SKG degree
distribution? We apply a certain model of noise to SKG
and provide both mathematical and empirical evidence that
this “straightens out” the degree distribution. Indeed, small
amounts of noise lead to a degree distribution that is predom-
inantly lognormal. This also shows a very appealing aspect of
our degree distribution analysis. We can very naturally explain
how noise affects the degree distribution and give explicit
bounds on these affects.

We set some parameters that grant simplified expressions.

• ∆ = m/n (average degree)
• σ = (t1 + t2)− 1/2 (We refer to this as the skew.)
• τ = (1 + 2σ)/(1− 2σ)
• λ = ∆(1− 4σ2)`/2

Slices: The vertices of the graph are numbered from 0 to
n − 1. Each vertex has an `-bit binary representation and
therefore corresponds to an element of the boolean hypercube
{0, 1}`. We can partition the vertices into slices, where each
slice consists of vertices whose representations have the same
number of 0’s (same Hamming weight). Recall that we assume
` is even. For r ∈ [−`/2, `/2], we say that slice r consists of
all vertices whose binary representations have exactly (`/2+r)
0’s.

These binary representations and slices are intimately con-
nected with edge insertions in the SKG model. For each
insertion, we are trying to randomly choose a source-sink pair.
First, let us simply choose the first bit (of the representations)
of the source and the sink. Note that there are 4 possibilities
(first bit for source, second for sink): 00, 01, 10, and 11. We
choose one of the combinations with probabilities t1, t2, t3,
and t4 respectively. This fixes the first bit of the source and
sink. We perform this procedure again to choose the second
bit of the source and sink. Repeating ` times, we finally decide

the source and sink of the edge. Since t1 is the largest value,
we tend to add more edges between vertices that have many
zeroes. Note that as r becomes larger, a vertex in an r-slice
tends to have higher degree.

A. Analysis

We begin by stating and explaining the main result of this
section. The next subsection gives a verbal explanation of the
results and the intuition behind how we proved them. Recall
that, for the sake of presentation, we assume that ` is even.
All theorems can be suitably modified for the general case.

For a real number x, bxe is the closest integer to x. We
use o(1) as a shorthand for a quantity that is negligible.
Typically, this becomes asymptotically zero very rapidly as
d or ` increases. We write A = (1 ± o(1))B to indicate that
the quantities A and B only differ by a lower order term. To
provide clean expressions, we make certain approximations
which are slightly off for certain regions of d and ` (essentially,
when d is either too small or too large). Furthermore, as our
figures will make amply clear, our expressions very tightly
approximate the degree distribution. The following theorem
provides a fairly simple closed form upper bound. We focus
on outdegrees, but analogous theorems hold for indegrees as
well.

Theorem 1: For degree d, let θd = ln(d/λ)/ ln τ . Define
Γd = bθde and γd = |θd−Γd|. The expected outdegree distri-
bution of a SKG is bounded above by a function that oscillates
between a lognormal and an exponential tail. Formally, assume
(e ln 2)` ≤ d ≤

√
n. If Γd ≥ `/2, then the expected number

of vertices of degree d is negligible (expectation is o(1)). If
Γd < `/2, the expected number of vertices of degree d is
bounded above (up to a small constant factor) by

1√
d

exp

(
−dγ2

d ln2 τ

2

)(
`

`/2 + Γd

)
.

Note that Γd = bln(d/λ)/ ln τe = Θ(ln d). Hence
(

`
`/2+Γd

)
can be thought of as

(
`

`/2+Θ(ln d)

)
. The function

(
`

`/2+x

)
repre-

sents a normal distribution of x, and therefore this is a lognor-
mal distribution of d. This is multiplied by exp(−dγ2

d ln2 τ/2).
We can see that γd ∈ [0, 1/2]. When γd is very close to 0, then
the exponential term is almost 1. Hence the product represents
a lognormal tail. On the other hand, when γd is a constant
(say > 0.2), then the product becomes an exponential tail.
Observe that γd oscillates between 0 and 1/2, leading to the
characteristic behavior of SKG. As θd becomes closer to an
integer, there are more vertices of degree d. As it starts to have
a larger fraction part, the number of such vertices plummets
exponentially. Note that there are many values of d (a constant
fraction) where γd > 0.2. Hence, for all these d, the degrees
are bounded above by an exponential tail. As a result, the
degree distribution cannot be a power law or a lognormal.

The estimates provided by Thm. 1 for our three different
SKG parameter sets are shown in Fig. 2. Note how this simple
estimate matches the oscillations of the actual degree distri-
bution very accurately. We provide a slightly more complex

expression in Lem. 3 that completely captures the degree
distribution.

The details of proving Thm. 1 are omitted due to length
and are provided in the full version [7]. We just state some
of the main lemmas and give an intuitive explanation in the
next subsection. The following lemma bounds the probability
that a vertex v at slice r has degree d. This lemma needs
the technical assumption that d ≤

√
n. Hence, our formula

becomes slightly inaccurate when d becomes large, but as our
figures show, it is not a major issue. This technical condition
can be removed, at the cost of making the expressions more
messy.

Lemma 2: Let v be a vertex in slice r and suppose that
d ≤
√
n. Then the probability that v has (out-)degree d is

(1± o(1))
λd

d!

(τ r)d

exp(λτ r)
.

The following lemma is the main technical result. Thm. 1
is a direct corollary of this lemma. Let Xd be the random
variable for the number of vertices of (out-)degree d. In the
following, the expectation is over the random choice of the
graph. Observe that the following bound is a tight estimate.

Lemma 3: Let θd = ln(d/λ)/ ln τ , rd = bθdc, and δd =
θd − rd. Let (e ln 2)` ≤ d ≤

√
n. If rd ≥ `/2, E[Xd] is

negligible. Otherwise, we have

E[Xd] =
1± o(1)√

2πd
exp

(
−dδ2

d ln2 τ

2

)(
`

`/2 + rd

)
+

1± o(1)√
2πd

exp

(
−d(1− δd)2 ln2 τ

2

)(
`

`/2 + rd + 1

)
.

We plot the bound given by this lemma in Fig. 2. Note how
it completely captures the behavior of the degree distribution
(barring a slight inaccuracy for larger degrees of the Graph500
graph because we start exceeding the upper bound for d in
Lem. 3).

B. Understanding the degree distribution

The following is a verbal explanation of our proof strategy
and captures the essence of the math. It will be convenient
to think of the parameters having some fixed simple values.
Let λ = 1 and τ = e. (This can be achieved with a
reasonable choice of T, `,∆.) We begin by looking at the
different slices of vertices. Vertices in a fixed r-slice have
an identical behavior with respect to the degree distribution.
Lem. 2 uses elementary probability arguments to argue that
the probability that a vertex in slice r has (out-)degree d is
roughly

exp(dr − er)
d!

(1)

When r � ln d, the numerator will be less than 1, and the
overall probability is � 1/d!. Therefore, those slices will not
have many (or any) vertices of degree d. If r � ln d, the
numerator is o(d!) and the probability is still (approximately)
at most 1/d!. Observe that when r is negative, then this
probability is extremely small, even for fairly small values

(a) CAHepPh (b) WEBNotreDame (with ` = 18) (c) Graph500 (with ` = 16)

Fig. 2: We plot the degree distribution of graphs generated using our three different SKG parameter sets. We then plot the
respective bounds predicted by Thm. 1 and Lem. 3. Observe how Thm. 1 correctly guesses the peaks and troughs of the degree
distribution. Lem. 3 is practically an exact match (except when the degree is below 2` or, in Graph500, slight inaccuracies
when the degree is too large).

of d. This shows that half of the vertices (in slices where the
number of 1’s is more than 0’s) have extremely small degrees.

It appears that the “sweet spot” is around ln d. Applying
Taylor approximations to appropriate ranges of r, we can show
that a suitable approximation of the probability of a slice r
vertex having degree d is roughly exp(−d(r − ln d)2). We
can now show that the SKG degree distribution is bounded
above by a lognormal tail. Only the vertices in slice r ≈ ln d
have a good chance of having degree d. This means that the
expected number of vertices of degree d is at most

(
`

`/2+ln d

)
.

Since the latter is normally distributed as a function of ln d,
it (approximately) represents lognormal tail. A similar conclu-
sion was drawn in [8], though their approach and presentation
is very different from ours.

This is where we significantly diverge. The crucial obser-
vation is that r is a discrete variable, not a continuous one.
When |r− ln d| ≥ 1/3 (say), the probability of having degree
d is at most exp(−d/9). That is an exponential tail, so we can
safely assume that vertices in those slices have no vertices of
degree d. Refer to Fig. 3. Since ln d is not necessarily integral,
it could be that for all values of r, |r − ln d| ≥ 1/3. In
that case, there are (essentially) no vertices of degree d. For
concreteness, suppose ln d = 100/3. Then, regardless of the
value of r, |r − ln d| ≥ 1/3. And we can immediately bound
the fraction of vertices that have this degree by the exponential
tail, exp(−d/9). When ln d is close to being integral, then for
r = bln de, the r-slice (and only this slice) will contain many
vertices of degree d. The quantity | ln d − bln de| fluctuates
between 0 and 1/2, leading to the oscillations in the degree
distribution.

Let Γd = bln de and γd = |Γd−ln d|. Putting the arguments
above together, we can get a very good estimate of the
number of vertices of degree d. This quantity is essentially
exp(−γ2

dd)
(

`
`/2+Γd

)
, as stated in Thm. 1. A more nuanced

argument leads to the bound in Lem. 3.

Fig. 3: Probability of nodes of degree d for various slices. If
ln d is far from integral, a vertex from slice r will have almost
no vertices of degree d. Adding noise can be thought of as an
average over the Gaussian. The probability of a slice r vertex
having degree d is now the area of the shaded region.

C. Enhancing SKG with Noise

Let us now focus on a noisy version of SKG that removes
the fluctuations in the degree distribution. The idea is quite
simple. For each level i ≤ `, define a new matrix Ti in such a
way that the expectation of Ti is just T . We will assume that
T is symmetric4.

At level i in the edge insertion, we use the matrix Ti to
choose the appropriate quadrant. Let b be a noise parameter
chosen such that b ≤ min((t1 + t4)/2, t2). For level i, choose
µi to be a uniform random number in the range [−b,+b].
Formally, the matrix of probabilities is

P =T1 ⊗ T2 ⊗ · · · ⊗ T`

where

Ti=

[
t1 − 2µit1

t1+t4
t2 + µi

t3 + µi t4 − 2µit4
t1+t4

]
.

Note that Ti is symmetric, its entries sum to 1, and all entries
are positive. Each level involves only one random number µi,

4It can easily be generalized, but this is omitted due to space.

which changes all the entries of T in a linear fashion. Hence,
we only need ` random numbers in total.

In Figures 1, 4a, and 4b, we show the effects of noise.
Observe how even a noise parameter as small as 0.05 (which
is extremely small compared to the matrix values) significantly
reduces the magnitude of oscillations. A noise of 0.1 com-
pletely removes the oscillations, and we attain a true lognormal
distribution (Thm. 4). (Even this is very small noise, since
the standard deviation of this noise parameter is just 0.06.)
This completely annihilates the undesirable exponential tail
behavior of SKG, and leads to a truly monotone decrease.

(a) CAHepPh (b) WEBNotreDame

Fig. 4: The figures show the degree distribution of standard
SKG and NSKG as the averages of 25 instances. Notice how
effectively a noise of 0.1 straightens the degree distribution.

D. Why does noise help?

We first state our formal theorem. Essentially, when the
noise is large enough, then we can show that the degree
distribution is at least a lognormal tail on average. This is a
significant change from SKG, where many degrees are below
an exponential tail. The full proof is given in [7] and we only
give an intuitive sketch here. Nonetheless, the reader does not
have to take our words on faith, since our figures provide clear
evidence that the degree distribution of NSKG (with noise =
0.1) is lognormal.

Theorem 4: Choose noise b so that it satisfies

b >

√
3

`

(
(1 + 2σ)(t1 + t4) ln τ

16σ

)
Then the expected degree distribution for NSKG is bounded
below by a lognormal. Formally, when Γd ≤ `/2 and
(e ln 2)` ≤ d ≤

√
n,

E[Xd] ≥
1

e2
√

2π`d

(
`

`/2 + Γd

)
.

Observe that the condition for b is just Ω(1/
√
`), since the

large complicated part in parenthesis is just some constant that
depends on T . For each of our case study SKG parameters,
this quantity ranges from 0.08 to 0.11. In practice, noise less
than this bound suffices. More importantly, this bound tells us
that as ` increases, we need less noise to get a lognormal tail.

We now provide a verbal description of the main ideas. Let
us assume that λ = 1 and τ = e, as before. We focus attention

on a vertex v of slice r, and wish to compute the probability
that it has degree d. Note the two sources of randomness: one
coming from the choice of the noisy SKG matrices, and the
second from the actual graph generation. We associate a bias
parameter ρv with every vertex v. This can be thought of as
some measure of how far the degree behavior of v deviates
from its noiseless version. Actually, it is the random variable
ln ρv that we are interested in. It can be shown that ln ρv is
distributed like a Gaussian. The distribution of ρv is identical
for all vertices in slice r. (Though it does not matter for our
purposes, for a given instantiation of the noisy SKG matrices,
vertices in the same slice can have different biases.)

We approximate the probability that v has degree d by

exp(dr + d ln ρv − ρver)/d!.

After some simplifying, this is roughly equal to exp(−d(r −
ln d − ln ρv)

2). The additional ln ρv will act as a smoothing
term. Observe that even if ln d has a large fractional part,
we could still get vertices of degree d. Suppose ln d = 10.5,
but ln ρv happened to be close to 0.5. Then vertices in slice
bln de would have degree d with some reasonable probability.
Contrast this with regular SKG, where there is almost no
chance that degree d vertices exist.

Think of the probability as exp(d(r − ln d − X)2), where
X is a random variable. The expected probability will be an
average over the distribution of X . Intuitively, instead of the
probability just being exp(d(r− ln d)2) (in the case of SKG),
it is now the average value over some interval. If the standard
deviation of X is sufficiently large, even though exp(d(r −
ln d)2) is small, the average of exp(d(r− ln d−X)2) can be
large. Refer to Fig. 3.

We know that X is a Gaussian random variable (with
some standard deviation σ). So we can formally express the
(expected) probability that v has degree d as an integral,∫ +∞

−∞
exp(d(r − ln d−X)2) · e−X

2/2σ2

dX.

This definite integral can be evaluated exactly (since it is just
a Gaussian). Intuitively, this is roughly the average value of
exp(d(r − ln d − X)2), where X ranges from −σ to +σ.
Suppose σ > 1. Since r ranges over the integers, there is
always some r such that |r − ln d| < 1. For this value of r,
the average of exp(d(r − ln d − X)2) over the range X ∈
[−1,+1] will have a reasonably large value. This ensures that
(in expectation) many vertices in this slice r have degree d.
This can be shown for all degrees d, and we can prove that
the degree distribution is at least lognormal.

E. Subtleties in adding noise

One might ask why we add noise in this particular fashion,
and whether other ways of adding noise are equally effective.
Since we only need ` random numbers, it seems intuitive that
adding “more noise” could only help. For example, we might
add noise on a per edge, basis, i.e., at each level i of every
edge insertion, we choose a new random perturbation Ti of
T . Interestingly, this version of noise does not smooth out

Fig. 5: Comparison of degree distribution of graphs gener-
ated by NKSG and by adding noise per edge for Graph500
parameters and ` = 26.

the degree distribution, as shown in Fig. 5. In this figure, the
red curve corresponds to the degree distribution of the graph
generated by NSKG with Graph500 parameters, ` = 26, and
b = 0.1. The blue curve corresponds to generation by adding
noise per edge. As seen in this figure, adding noise per edge
has hardly any effect on the oscillations, while NSKG provides
a smooth degree distribution curve. (These results are fairly
consistent over different parameter choices.) It is crucial that
we use the same noisy T1, . . . , T` for every edge insertion.

IV. ISOLATED VERTICES

In this section, we give a simple formula for the number of
isolated vertices in SKG. This can be derived from elementary
probability calculations described in the full version [7]. We
focus on the symmetric case5, where t2 = t3 in the matrix T .
We assume that ` is even in the following, but the formula can
be extended for ` being odd. The real contribution here is not
the methodology, but the final result, since it gives a clearer
understanding of how many vertices SKG leaves isolated and
how the SKG parameters affects this number. At the cost of a
tiny error, the following gives a formula that is intuitive and
easy enough to compute on a calculator.

Theorem 5: The number of isolated vertices can be approx-
imated (within additive error 0.01n) by

r=`/2∑
r=−`/2

(
`

`/2 + r

)
exp(−2λτ r) (2)

The fraction of isolated vertices in a slice r is essentially
exp(−λτ r). Note that τ is larger than 1. Hence, this is a
decreasing function of r. This is quite natural, since if a
vertex v has many zeroes in its representation (higher slice),
then it is likely to have a larger degree (and less likely
to be isolated). This function is doubly exponential in r,
and therefore decreases very quickly with r. The fraction of
isolates rapidly goes to 0 (resp. 1) as r is positive (resp.
negative).

5Our formula can be extended to the general case but is less elegant.

Fig. 6: Core decompositions of real graphs and their SKG
model. Observe that the max core of SKG is an order of
magnitude smaller.

Relation of SKG parameters to the number of isolated
vertices: When λ decreases, the number of isolated vertices
increases. Suppose we fix the SKG matrix and average degree
∆, and start increasing `. Note that this is done in the
Graph500 benchmark, to construct larger and larger graphs.
The value of λ decreases exponentially in `, so the number of
isolated vertices will increase. Our formula suggests ways of
counteracting this problem. The value of ∆ could be increased,
or the value σ could be decreased. But, in general, this will
be a problem for generating large sparse graphs using a fixed
SKG matrix.

When σ increases, then λ decreases and τ increases.
Nonetheless, the effect of λ is much stronger than that of
τ . Hence, the number of isolated vertices will increase as σ
increases.

In Tab. I, we compute the estimated number of isolated
vertices in graphs for the Graph500 parameters. Observe how
the fraction of isolated vertices consistently increases as ` is
increased. For the largest setting of k = 42, only one fourth
of the vertices are not isolated.

V. k-CORES IN SKG

Structures of k-cores are a very important part of social
network analysis [19], [16], [15], as they are a manifestation of
the community structure and high connectivity of these graphs.

Definition 6: Given an undirected graph G = (V,E), the
subgraph induced by set S ⊆ V , is denoted by G|S := (S,E′),
where E′ contains every edge of E that is completely con-
tained in S. For an undirected graph, the k-core of G the
largest induced subgraph of minimum degree k. The max core
number of G is the largest k such that G contains a (non-
empty) k-core. (These can be extended to directed versions: a
k-out-core is a subgraph with min out-degree k.)

A bipartite core is an induced subgraph with every vertex
has either a high in-degree or out-degree. The former are
called authorities and the latter are hubs. Large bipartite cores
are present in web graphs and are an important structural
component [26], [27]. Note that if we make the a directed
graph undirected (by simply removing the directions), then a

(a) Varying σ (b) Varying ` (c) Varying ∆

Fig. 7: We plot the max core number against various parameters. In the first picture, we plot the max core number of an
(symmetric) SKG graph with increasing σ. Next, we show how the max core number increases with `, the number of levels.
Observe the major role that the matrix σ plays. For Graph500, σ is much larger than the other parameter sets. Finally, we
show that regardless of the parameters, the max core number increases linearly with ∆.

bipartite core becomes a normal core. Hence, it is useful to
compute cores in a directed graph by making it undirected.

We begin by comparing the sizes of k-cores in real graphs,
and their models using SKG [3]. Refer to Fig. 6. We plot
the size of the maximum k-core with k. The k at which
the curve ends is the max core number. (For CAHepPh, we
look at undirected cores, since this is an undirected graph.
For WEBNotreDame, a directed graph, we look at out-cores.
But the empirical observations we make holds for all other
core versions.) For both our examples, we see how drastically
different the curves are. By far the most important difference
is that the curve for the SKG versions are extremely short.
This means that the max core number is much smaller for
SKG modeled graphs compared to their real counterparts. For
the web graph WEBNotreDame, we see the presence of large
cores, probably an indication of some community structure.
The maximum core number of the SKG version is an order
of magnitude smaller. Minor modifications (like increasing
degree, or slight variation of parameters) to these graphs do
not increase the core sizes or max cores numbers much. This
is a problem, since this is strongly suggesting that SKG do
not exhibit localized density like real web graphs or social
networks.

If we wish to use SKG to model real networks, then it is
imperative to understand the behavior of max core numbers for
SKG. Indeed, in Tab. II, we see that our observation is not just
an artifact of our examples. SKGs consistently have very low
max core number. Only for the peer-to-peer Gnutella graphs
does SKG match the real data, and this is specifically for
the case where the max core number is extremely small. For
the undirected graph (the first three coauthorship networks),
we have computed the undirected cores. The corresponding
SKG is generated by copying the upper triangular part in the
lower half to get a symmetric matrix (an undirected graph).
The remaining graphs are directed, and we simply remove
the direction on the edges and compute the total core. Our
observations hold for in and out cores as well (given in full

version), and a wide range of data. This is an indication that
SKG is not generating dense enough subgraphs.

TABLE II: Core sizes in real graphs and SKG version
Graph Real max core SKG max core
CAGrQc 43 4
CAHepPh 238 16
CAHepTh 31 5
CITHepPh 30 19
CITHepTh 37 19
P2PGnutella25 5 5
P2PGnutella30 7 6
SOCEpinions 67 43
WEBNotreDame 155 31

We focus our attention on the max core number of SKG.
How does this number change with the various parameters?
The following summarizes our observations.

Empirical Observation 7: We focus on the case of symmet-
ric T . As before, σ = (t1 + t2)− 1/2.

1) The max core number increases with σ. By and large, if
σ < 0.1, max core numbers are extremely tiny.

2) Max core numbers grow with ` only when the values of
σ are sufficiently large. Even then, the growth is much slower
than the size of the graph. For smaller σ, max core numbers
exhibit essentially negligible growth.

3) Max core numbers increase essentially linearly with ∆.

Large max core numbers require larger values of σ. As
mentioned in §IV, increasing σ increases the number of
isolated vertices. Hence, there is an inherent tension between
increasing the max core number and decreasing the number
of isolated vertices.

For the sake of consistency, we performed the following
experiments on the max core after taking a symmetric version
of the SKG graph. Our results look the same for in and out
cores as well. In Fig. 7a, we show how increasing σ increases
the max core number. We fix the values of ` = 16 and m =
6× 216. (There is nothing special about these values. Indeed

the results are basically identical, regardless of this choice.)
Then, we fix t1 (or t2) to some value, and slowly increase
σ by increasing t2 (resp. t1). We see that regardless of the
fixed values of t1 (or t2), the max core consistently increases.
But as long as σ < 0.1, max core numbers remain almost the
same.

In Fig. 7b, we fix matrix T and average degree ∆, and only
vary `. For WEBNotreDame6, we have σ = 0.18 and for
CA-HEP-Ph, we have σ = 0.11. For both cases, increasing `
barely increases the max core number. Despite increasing the
graph size by 8 orders of magnitude, the max core number
only doubles. Contrast this with the Graph500 setting, where
σ = 0.26, and we see a steady increase with larger `. This is
a predictable pattern we notice for many different parameter
settings: larger σ leads to larger max core numbers as ` goes
up. Finally, in Fig. 7c, we see that the max core number is
basically linear in ∆.

VI. CONCLUSIONS

For a true understanding of a model, a careful theoretical
and empirical study of its properties in relation to its param-
eters is imperative. This not only provides insights into why
certain properties arise, but also suggests ways for enhance-
ment. One strength of the SKG model is its amenability to
rigorous analysis, which we exploit in this paper.

We prove strong theorems about the degree distribution,
and more significantly show how adding noise can give a
true lognormal distribution by eliminating the oscillations in
degree distributions. Our proposed method of adding noise
requires only ` random numbers all together, and is hence
cost effective. We want to stress that our major contribution is
in providing both the theory and matching empirical evidence.
The formula for expected number of isolated vertices provides
an efficient alternative to methods for computing the full
degree distribution. Besides requiring fewer operations to
compute and being less prone to numerical errors, the formula
transparently relates the expected number of isolated vertices
to the SKG parameters. Our studies on core numbers establish
a connection between the model parameters and the cores of
the resulting graphs. In particular, we show that commonly
used SKG parameters generate tiny cores, and the model’s
ability to generate large cores is limited.

ACKNOWLEDGMENTS

This work was funded by the applied mathematics program
at the United States Department of Energy and performed
at Sandia National Laboratories, a multiprogram laboratory
operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the United States Depart-
ment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

We are grateful to David Gleich for the MATLAB BGL
library as well as many helpful discussions. We thank Todd
Plantenga for running many SKG experiments, and especially

6Even though the matrix T is not symmetric, we can still define σ. Also, the off
diagonal values are 0.20 and 0.21, so they are almost equal.

for generating Fig. 5. We thank Jon Berry for checking our
Graph500 predictions against real data, and also David Bader
and Richard Murphy for discussions about the Graph500
benchmark. We also acknowledge Jennifer Neville and Blair
Sullivan, who inspired us with their different work on SKGs
during recent visits to Sandia.

REFERENCES

[1] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and
algorithms,” ACM Computing Surveys, vol. 38, no. 1, 2006.

[2] J. Leskovec and C. Faloutsos, “Scalable modeling of real graphs using
kronecker multiplication,” in ICML ’07. ACM, 2007, pp. 497–504.

[3] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling
networks,” J. Machine Learning Research, vol. 11, pp. 985–1042,
Feb. 2010. [Online]. Available: http://jmlr.csail.mit.edu/papers/v11/
leskovec10a.html

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in SDM ’04, 2004, pp. 442–446. [Online]. Available:
http://siam.org/proceedings/datamining/2004/dm04 043chakrabartid.pdf

[5] Graph 500 Steering Committee, “Graph 500 benchmark,” 2010, available
at http://www.graph500.org/Specifications.html.

[6] M. Mitzenmacher, “The future of power law research,” Internet
Mathematics, vol. 2, no. 4, pp. 525–534, 2006. [Online]. Available:
http://www.internetmathematics.org/volumes/2/4/mitzenmacher.pdf

[7] “An in depth analysis of stocahstic kronecker graphs,” available
at https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=
0B7wUBMtOTi3OMTc0ZGFkYmQtMGZlYS00NDFlLTkxOWUtMzUxNzNjZmI4ZDE2&hl=
en US&authkey=CLe18Z4B.

[8] M. Kim and J. Leskovec, “Multiplicative attribute graph model
of real-world networks,” Sep. 2010, arXiv:1009.3499v2. [Online].
Available: http://arxiv.org/abs/1009.3499v2

[9] C. Groër, B. D. Sullivan, and S. Poole, “A mathematical analysis of the
R-MAT random graph generator,” Jul. 2010, available at http://www.
ornl.gov/∼b7r/Papers/rmat.pdf.

[10] Z. Bi, C. Faloutsos, and F. Korn, “The “DGX” distribution for mining
massive, skewed data,” in KDD ’01. ACM, 2001, pp. 17–26.

[11] D. Pennock, G. Flake, S. Lawrence, E. Glover, and C. L. Giles, “Winners
don’t take all: Characterizing the competition for links on the web,”
PNAS, vol. 99, no. 8, pp. 5207–5211, 2002.

[12] M. Mitzenmacher, “A brief history of generative models for power law
and lognormal distributions,” Internet Mathematics, vol. 1, no. 2, pp.
226–251, 2003. [Online]. Available: http://projecteuclid.org/euclid.im/
1089229510

[13] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distri-
butions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703,
2009.

[14] J. Berry and R. Murphy, Members of Graph500 steering committee,
Personal communication.

[15] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online
social networks,” in Link Mining: Models, Algorithms, and Applications.
Springer, 2010, pp. 337–357.

[16] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-
core decomposition of internet graphs: hierarchies, self-similarity and
measurement biases,” Networks and Heterogenous Media, vol. 3, no. 2,
pp. 371–393, 2008.

[17] C. Gkantsidis, M. Mihail, and E. W. Zegura, “Spectral analysis of
internet topologies,” in INFOCOM 2003. IEEE, 2003, pp. 364–374.

[18] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, “k-core
(bootstrap) percolation on complex networks: Critical phenomena and
nonlocal effects,” Phys. Rev. E, vol. 73, no. 5, p. 056101, May 2006.

[19] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model of
internet topology using k-shell decomposition,” PNAS, vol. 104, no. 27,
pp. 11 150–11 154, 2007.

[20] R. Andersen and K. Chellapilla, “Finding dense subgraphs with size
bounds,” in Algorithms and Models for the Web-Graph. Springer, 2009,
pp. 25–37.

[21] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,
mathematically tractable graph generation and evolution, using Kro-
necker multiplication,” in PKDD 2005. Springer, 2005, pp. 133–145.

[22] M. Mahdian and Y. Xu, “Stochastic Kronecker graphs,” Random Struc-
tures & Algorithms, in press, conference version appeared as [?].

[23] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Y. Zhao,
“Measurement-calibrated graph models for social network experiments,”
in WWW ’10. ACM, 2010, pp. 861–870.

http://jmlr.csail.mit.edu/papers/v11/leskovec10a.html
http://jmlr.csail.mit.edu/papers/v11/leskovec10a.html
http://siam.org/proceedings/datamining/2004/dm04_043chakrabartid.pdf
http://www.graph500.org/Specifications.html
http://www.internetmathematics.org/volumes/2/4/mitzenmacher.pdf
https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B7wUBMtOTi3OMTc0ZGFkYmQtMGZlYS00NDFlLTkxOWUtMzUxNzNjZmI4ZDE2&hl=en_US&authkey=CLe18Z4B
https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B7wUBMtOTi3OMTc0ZGFkYmQtMGZlYS00NDFlLTkxOWUtMzUxNzNjZmI4ZDE2&hl=en_US&authkey=CLe18Z4B
https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B7wUBMtOTi3OMTc0ZGFkYmQtMGZlYS00NDFlLTkxOWUtMzUxNzNjZmI4ZDE2&hl=en_US&authkey=CLe18Z4B
http://arxiv.org/abs/1009.3499v2
http://www.ornl.gov/~b7r/Papers/rmat.pdf
http://www.ornl.gov/~b7r/Papers/rmat.pdf
http://projecteuclid.org/euclid.im/1089229510
http://projecteuclid.org/euclid.im/1089229510

[24] B. Miller, N. Bliss, and P. Wolfe, “Subgraph detection using eigenvector
L1 norms,” in NIPS 2010, 2010, pp. 1633–1641. [Online]. Available:
http://books.nips.cc/papers/files/nips23/NIPS2010 0954.pdf

[25] S. Moreno, S. Kirshner, J. Neville, and S. V. N. Vishwanathan, “Tied
Kronecker product graph models to capture variance in network popula-
tions,” in Proc. 48th Annual Allerton Conf. on Communication, Control,
and Computing, Oct. 2010, pp. 1137–1144.

[26] D. Gibson, J. Kleinberg, and P. Raghavan, “Inferring web communities
from link topology,” in HYPERTEXT ’98. ACM, 1998, pp. 225–234.

[27] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

http://books.nips.cc/papers/files/nips23/NIPS2010_0954.pdf

	Introduction
	Notation and Background
	Our Contributions
	Parameters for empirical study

	Previous Work
	Degree Distribution
	Analysis
	Understanding the degree distribution
	Enhancing SKG with Noise
	Why does noise help?
	Subtleties in adding noise

	Isolated Vertices
	k-cores in SKG
	Conclusions
	References

